Chapter 31: Plant Reproduction

Plants and Pollinators

- Pollen had evolved by 390 million years ago
 - Sperm packed inside a nutritious package
 - Transferred first by wind currents
 - Later transferred by insects
- Plants that attracted insect pollinators with flowers had a reproductive advantage

Angiosperm Life Cycles

- Dominant form is the diploid sporophyte
- In flowers, haploid spores formed by meiosis develop into gametophytes

Fig. 31-2, p.526

Flower Structure

- Nonfertile parts
 - Sepals
 - Receptacle
- Fertile parts
 - Male stamens
 - Female carpel (ovary)

Kinds of Flowers

Perfect flowers

Have both male and female parts

Imperfect flowers

- Are either male or female
- Same plant may have both male and female flowers
- Sexes may be on separate plants

Pollen Allergies

- Millions of people are genetically predisposed to overreact to certain kinds of pollen
- Symptoms include a runny nose, reddened and itchy eyelids, and sneezing

Fig. 31-4a, p.527

Fig. 31-4b, p.527

@ 2006 Brooks/Cole - Thomson

Fig. 31-4c, p.527

Pollination

- Transfer of pollen grains to a receptive stigma
- Pollen can be transferred by a variety of agents
- When a pollen grain lands on the stigma it germinates

Pollinators

- Pollination vectors
 - Winds
 - Insects
 - Birds
 - Other animals

Coevolution with pollinators

Fig. 31-5a, p.528

Pollinators

Visual cues

Size, shape, color, pattern

Olfactory cues

- Odors from fruit or flowers
- Pollinators follow concentration gradient of volatile chemicals to their sources

Reinforcements

Nectar

Pollinators

@ 2006 Brooks/Cole - Thomson

Long Floral Tubes and the Hawkmoths

© 2006 Thomson Higher Education Fig. 31-7, p.529

Pollen Formation

- Each anther has four pollen sacs
- Inside pollen sacs, cells undergo meiosis and cytoplasmic division to form microspores

 Microspores undergo mitosis to form pollen grains

Egg Formation

- Meiosis in ovule produces megaspores
- All megaspores but one disintegrate
- It undergoes mitosis three times without cytoplasmic division
- Result is a cell with eight nuclei
- Division produces seven-celled female gametophyte
- One cell is egg, another will form endosperm

Events inside Ovule

Figure 31.9 Page 531

© 2001 Brooks/Cole - Thomson Learning

Endosperm Formation

- Occurs only in angiosperms
- Fusion of a sperm nucleus with the two nuclei of the endosperm mother cell produces a triploid (3n) cell
- This cell will give rise to the endosperm, the nutritive tissue of the seed

Stepp ed Fig. 31-10, p.532

Seed Formation

- Fertilization of the egg produces a diploid sporophyte zygote
- The zygote undergoes mitotic divisions to become an embryo sporophyte
- Seed: A mature ovule, which encases an embryo sporophyte and food reserves inside a protective coat

Structure of a Seed

- Protective seed coat is derived from integuments that enclosed the ovule
- Nutritious endosperm is food reserve
- Embryo has one or two cotyledons
 - Monocot has one
 - Dicot has two

Fig. 31-11g, p.533

Multiple Fruits

- Formed from individual ovaries of many flowers that grew clumped together
- Examples:
 - Pineapple
 - Fig

Accessory Fruits

Apple

seed

enlarged

receptacle

Strawberry

Seed Dispersal

- Fruit structure is adapted to mode of dispersal
- Some modes of seed dispersal:
 - Wind currents
 - Water currents
 - Animals

Table 31.1 Three Ways To Classify Fruits

How did the fruit originate?

1. Simple fruit One flower, single or fused carpels

2. Aggregate fruit One flower, several unfused carpels;

becomes cluster of several fruits

3. Multiple fruit Cluster of individually pollinated flowers

that grow and fuse together

What is the fruit's tissue composition?

1. True fruit Only ovarian wall and its contents

2. Accessory fruit Ovary as well as other floral parts,

such as the receptacle

Is the fruit dry or fleshy?

1. Dry:

to release seeds

b. Indehiscent Seeds dispersed from the parent plant

inside intact, dry fruit wall

2. Fleshy:

a. Drupe Fleshy fruit around hard pit with one

(usually) seed inside

b. Berry Fleshy fruit, no pit, one to many seeds

Pepo: Hard rind on ovary wall

Hesperidium: Leathery rind on ovary wall

c. Pome Fleshy accessory tissues, seeds in

elastic core

Fig. 31-12a, p.534

Asexual Reproduction

- New roots or shoots grow from extensions or fragments of existing plants
- Proceeds by way of mitosis
- All offspring are genetically identical (unless mutation occurs)

Fig. 31-12b, p.534

Table 31.2	Asexual Re	productive Modes (of Flowering	g Plants
------------	------------	--------------------	--------------	----------

Mechanism	Examples	Characteristics		
Vegetative Reproduction on Modified Stems				
1. Runner	Strawberry	New plants arise at nodes along aboveground horizontal stems.		
2. Rhizome	Bermuda grass	New plants arise at nodes of underground horizontal stems.		
3. Corm	Gladiolus	New plants arise from axillary buds on short, carbohydrate-storing, underground stems.		
4. Tuber	Potato	New shoots arise from axillary buds (tubers are enlarged tips of slender underground rhizomes).		
5. Bulb	Onion, lily	New bulbs arise from axillary buds on short underground stems.		
Parthenogenesis				
	Orange, rose	Embryo develops without nuclear or cellular fusion (for example, from an unfertilized haploid egg or by developing adventitiously, from tissue surrounding the embryo sac).		
Vegetative Propagation				
	Jade plant, African violet	New plant develops from tissue or structure (a leaf, for instance) that drops from the parent plant or gets separated from it.		
Tissue Culture Propagation				
	Orchid, lily, wheat, rice, corn, tulip	New plant induced to arise from a parent plant cell that is not irreversibly differentiated.		